
One equivalent of Walker Inequality.

Inequalities
https://www.linkedin.com/groups/8313943/8313943-6396576505849274371
Let x; y; z be non-negative reals such that x2 ++y2 + z2 + xyz = 4:
Show that xyz � xy + yz + zx � xyz + 2:
Solution by Arkady Alt, San Jose,California, USA.
First note that by AM-GM inequality 4�xyz = x2+y2+z2 � 3
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xyz � 1:
Then xy + yz + zx � 3
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and since (xyz)2=3 � xyz we obtain

xy + yz + zx � 3xyz � xyz:
Also note that inequality xy + yz + zx � xyz + 2 holds if at least one of

variables x; y; z
equal to zero. Indeed, let z = 0:Then x2 + y2 = 4 and,therefore; xy �

x2 + y2

2
= 2:

Thus, remains to prove inequality xy + yz + zx � xyz + 2 for x; y; z > 0:
Since all positive solutions of equation x2 + y2 + z2 + xyz = 4 can be repre-

sented in the
form x = 2 cos�; y = 2 cos�; z = 2 cos 
;where �; �; 
 2 (0; �=2) and � +
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 = � then
xy+yz+zx � xyz+2 becomes 4
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Let ABC be some triangle with angles �; �; 
 and R; r; s be,respectively,
circumradius,inradius

and semiperimeter of4ABC:Then, since cos� cos� cos 
 = s2 � (2R+ r)2
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inequality (1) becomes
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2R2+8Rr+3r2 � s2 (Walker�s Inequality*for acute angled triangle).

My proof of theWalker�s Inequality.
First we will prove that in any acute angled triangle holds inequality a2 +

b2 + c2 � 4 (R+ r)2 :
We have a2 + b2 + c2 � 4 (R+ r)
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Since by Cauchy Inequality
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Noting that ab+ bc+ ca = s2 + 4Rr + r2 we obtain
4s2 = (a+ b+ c)

2
= a2+b2+c2+2 (ab+ bc+ ca) � 4 (R+ r)2+2

�
s2 + 4Rr + r2

�
=

4R2 + 16Rr + 6r2 + 2s2 () s2 � 2R2 + 8Rr + 3r2:
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